Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation.

نویسندگان

  • Maren von Köckritz-Blickwede
  • Oliver Goldmann
  • Pontus Thulin
  • Katja Heinemann
  • Anna Norrby-Teglund
  • Manfred Rohde
  • Eva Medina
چکیده

These days it has been increasingly recognized that mast cells (MCs) are critical components of host defense against pathogens. In this study, we have provided the first evidence that MCs can kill bacteria by entrapping them in extracellular structures similar to the extracellular traps described for neutrophils (NETs). We took advantage of the ability of MCs to kill the human pathogen Streptococcus pyogenes by a phagocytosis-independent mechanism in order to characterize the extracellular antimicrobial activity of MCs. Close contact of bacteria and MCs was required for full antimicrobial activity. Immunofluorescence and electron microscopy revealed that S pyogenes was entrapped by extracellular structures produced by MCs (MCETs), which are composed of DNA, histones, tryptase, and the antimicrobial peptide LL-37. Disruption of MCETs significantly reduced the antimicrobial effect of MCs, suggesting that intact extracellular webs are critical for effective inhibition of bacterial growth. Similar to NETs, production of MCETs was mediated by a reactive oxygen species (ROS)-dependent cell death mechanism accompanied by disruption of the nuclear envelope, which can be induced after stimulation of MCs with phorbol-12-myristate-13-acetate (PMA), H(2)O(2), or bacterial pathogens. Our study provides the first experimental evidence of antimicrobial extracellular traps formation by an immune cell population other than neutrophils.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iron-chelating agent desferrioxamine stimulates formation of neutrophil extracellular traps (NETs) in human blood-derived neutrophils

Neutrophil extracellular trap (NET) formation is a significant innate immune defense mechanism against microbial infection that complements other neutrophil functions including phagocytosis and degranulation of antimicrobial peptides. NETs are decondensed chromatin structures in which antimicrobial components (histones, antimicrobial peptides and proteases) are deployed and mediate immobilizati...

متن کامل

Staphylococcus aureus evades the extracellular antimicrobial activity of mast cells by promoting its own uptake.

In this study, we investigated the interactions of Staphylococcus aureus with mast cells, which are multifunctional sentinels lining the surfaces of the body. We found that bone marrow-derived murine mast cells (BMMC) exerted a powerful phagocytosis-independent antimicrobial activity against S. aureus. Both the release of extracellular traps as well as discharge of antimicrobial compounds were ...

متن کامل

Neutrophil Extracellular Trap Formation: A Single Cell Event?

In 2004, neutrophil extracellular traps (NETs) have been described as fundamental immune defense of neutrophils against various microbes. Since that time publications are increasing that characterize the stimuli and cellular mechanisms which can activate the cells to release NETs. However, it is still not entirely clear whether NET formation starts as a single cell event, that spreads by cell t...

متن کامل

Hypoxia Modulates the Response of Mast Cells to Staphylococcus aureus Infection

To study the antimicrobial function of immune cells ex vivo, cells are commonly cultivated under atmospheric oxygen concentrations (20-21%; normoxia), although the physiological oxygen conditions in vivo are significantly lower in most tissues. Especially during an acute infection, oxygen concentration locally decreases to hypoxic levels around or below 1%. The goal of this study was to investi...

متن کامل

Platelets: New Bricks in the Building of Neutrophil Extracellular Traps

In addition to being key elements in hemostasis and thrombosis, platelets have an important role in the inflammatory and innate immune response. This activity is associated with their capability to recognize pathogens through the expression of toll-like receptors, the secretion of various cytokines, chemokines, and growth factors stored within their granules, and the expression of cell adhesion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 111 6  شماره 

صفحات  -

تاریخ انتشار 2008